Enumerating minimal dominating sets and variants in chordal bipartite graphs

Emanuel Castelo
Oscar Defrain
Guilherme C. M. Gomes

Aix-Marseille Université, France Universidade Federal de Minas Gerais, Brazil

Chordal bipartite: definition

Definition (Chordal bipartite)

A bipartite graph is **chordal bipartite** if it does not contain induced cycles of length at least six.

2

Chordal bipartite: elimination ordering

Definition (Weak-simplicial)

A vertex $\mathbf{v} \in V(G)$ is **weak-simplicial** if

- N(v) is an independent set;
- for every pair $x, y \in N(v)$, either $N(x) \subseteq N(y)$ or $N(y) \subseteq N(x)$ ¹.

 $^{^{1}}x$ and y are said to be comparable.

Chordal bipartite: elimination ordering

Definition (Weak-simplicial elimination ordering)

An ordering v_1, \ldots, v_n of V(G) is said to be a **weak-simplicial elimination ordering** if, for all $i \in [n]$, v_i is weak-simplicial in $G_i = G[\{v_i, \ldots, v_n\}]$.

Theorem ([1])

A graph is chordal bipartite if and only if it admits a weak-simplicial elimination ordering.

 $(x_2, x_1, y_1, y_2, x_4, y_3, y_4, x_3, y_5)$ is a weak-simplicial ordering of G.

Domination problems

Definition (Dominating Set)

A set $D \subseteq V(G)$ is a dominating set of G if N[D] = V(G).

Definition (Total Dominating Set)

A set $D \subseteq V(G)$ is a total dominating set of G if N(D) = V(G).

Definition (Connected Dominating Set)

A set $D \subseteq V(G)$ is a connected dominating set of G if N[D] = V(G) and G[D] is connected.

In all cases, D is said to be minimal if it is inclusion-wise minimal.

5

Enumeration variants

Minimal Dominating Set Enumeration (MINDOM·ENUM)

Input: A graph *G*.

Output: All minimal dominating sets of *G*.

Minimal Connected Dominating Set Enumeration (CMINDOM·ENUM)

Input: A graph G.

Output: All minimal connected dominating sets of *G*.

Minimal Total Dominating Set Enumeration (TMINDOM·ENUM)

Input: A graph G.

Output: All minimal total dominating sets of *G*.

State-of-the-art and directions

What do we know?

- MINDOM·ENUM is in **IncP** on chordal bipartite graphs [2];
- TMINDOM·ENUM is in **DelayP** on chordal bipartite graphs [2]; and
- CMINDOM·ENUM is hard [3].
- Question 1: Is MINDOM·ENUM in DelayP on chordal bipartite graphs?
- Question 2: Is CMINDOM·ENUM in TotalP on chordal bipartite graphs?

The algorithm: general idea

Observation

Minimal dominating sets in a graph corresponds to minimal transversals of the closed neighborhood hypergraph.

- Fix an ordering (v_1, \ldots, v_n) of V(G);
- $\mathcal{H}_i :=$ hypergraph of closed neighborhoods of G included in $\{v_1, \ldots, v_i\}$;
- Extend a $T \in Tr(\mathcal{H}_i)$ to a $T' \in Tr(\mathcal{H}_{i+1})$.

The algorithm: general idea

Observation

Minimal dominating sets in a graph corresponds to minimal transversals of the closed neighborhood hypergraph.

- Fix an ordering (v_1, \ldots, v_n) of V(G);
- $\mathcal{H}_i :=$ hypergraph of closed neighborhoods of G included in $\{v_1, \ldots, v_i\}$;
- Extend a $T \in Tr(\mathcal{H}_i)$ to a $T' \in Tr(\mathcal{H}_{i+1})$.

The algorithm: general idea

Observation

Minimal dominating sets in a graph corresponds to minimal transversals of the closed neighborhood hypergraph.

- Fix an ordering (v_1, \ldots, v_n) of V(G);
- $\mathcal{H}_i :=$ hypergraph of closed neighborhoods of G included in $\{v_1, \ldots, v_i\}$;
- Extend a $T \in Tr(\mathcal{H}_i)$ to a $T' \in Tr(\mathcal{H}_{i+1})$.

What properties do we want? A search tree!

- No cycles; and
- No leaves of height i < n.

Parent of $T \in Tr(\mathcal{H}_{i+1})$ (*)

Repetedly remove the smallest vertex $v \in T$ with no private neighbors in \mathcal{H}_i .

Ensuring children for $i \in [n-1]$ (*)

If $T^{\star} \in Tr(\mathcal{H}_i)$, $i \in [n-1]$, then either:

- $T^* \in Tr(\mathcal{H}_{i+1})$ and is its own parent; or
- $T^* \cup \{v_{i+1}\} \in Tr(\mathcal{H}_{i+1})$ and T^* is its parent.

Lemma

If T is a child of T^* , then $T = T^* \cup X$, where $X \in Tr(\Delta_{i+1})$.

Observation

If $|Tr(\Delta_{i+1})|$ is polynomial, then we have **DelayP** + **PSPACE**!

- $\Delta_{i+1} := \text{subset of } \mathcal{H}_{i+1} \text{ not}$ hit by $T \in Tr(\mathcal{H}_i)$;
- **Bad news:** $|Tr(\Delta_{i+1})|$ can be exponential in general;
- Good news: polynomial for chordal bipartite graphs!

Lemma

If T is a child of T^* , then $T = T^* \cup X$, where $X \in Tr(\Delta_{i+1})$.

Observation

If $|Tr(\Delta_{i+1})|$ is polynomial, then we have **DelayP** + **PSPACE**!

MinDom-Enum

Observation

If v is weak-simplicial, then $G[N[v] \cup N^2(v)]$ is **bipartite chain**.

- $\bullet \ B := \{u \in N(v_{i+1}) \mid N[u] \in \Delta_{i+1}\};$
- $R := \left(\bigcup_{H \in \Delta_{i+1}} H\right) \setminus B$.

MinDom-Enum

Lemma

Let $T \in Tr(\Delta_{i+1})$. Then

- $|T \cap R \cap N(v_{i+1}) \le 1$; and
- $|T \cap N^2(\underline{v_{i+1}})| \leq 1$.

MinDom-Enum

Lemma

Let $T \in Tr(\Delta_{i+1})$. Then exactly one of the following holds:

- $T = \{v_{i+1}\};$
- $T \subseteq B$, in which case T = B;
- $T \subseteq R$, in which case $|T| \le 2$;
- $T = \{r\} \cup (B \setminus N(r))$ for some $r \in N^2(v_{i+1})$.

Results

Theorem ([4])

 $MINDOM \cdot ENUM$ is in **DelayP** + **PSPACE** on chordal bipartite graphs.

Theorem ([4])

CMINDOM·ENUM is in **IncP** on chordal bipartite graphs.

Theorem ([4])

The sequential method is **NP**-complete for minimal dominating sets even if restricted bipartite graphs.

Theorem ([4, 5])

CMINDOM·ENUM is MINTRANS·ENUM-hard even if restricted to bipartite graphs.

References

- [1] Kazuhiro Kurita et al. "An Efficient Algorithm for Enumerating Chordal Bipartite Induced Subgraphs in Sparse Graphs". In: International Workshop on Combinatorial Algorithms. Springer. 2019, pp. 339–351.
- [2] Petr A Golovach et al. "Enumerating minimal dominating sets in chordal bipartite graphs". In: Discrete Applied Mathematics 199 (2016), pp. 30–36.
- [3] Mamadou Moustapha Kanté et al. "On the enumeration of minimal dominating sets and related notions". In: SIAM Journal on Discrete Mathematics 28.4 (2014), pp. 1916–1929.
- [4] Emanuel Castelo, Oscar Defrain, and Guilherme Gomes.

 "Enumerating minimal dominating sets and variants in chordal bipartite graphs". In: arXiv preprint arXiv:2502.14611 (2025).

[5] Yasuaki Kobayashi et al. "Enumerating minimal vertex covers and dominating sets with capacity and/or connectivity constraints". In: Algorithms 18.2 (2025), p. 112.