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Abstract

Given a digraph D = (V, A) where each arc (7, j) € A has a cost d;; € Ry and a color ¢(i, j),
a positive integer k, and vertices s,t € V, the k-Color Shortest Path Problem consists in
finding a path from s to ¢t of minimum cost while using at most & distinct arc colors. We
propose valid inequalities for the problem that proved to strengthen the linear relaxation of
an existing Integer Linear Programming formulation for the problem. One exponential set of
valid inequalities defines a new formulation for the problem that is solved by using a branch-
and-cut algorithm. We introduce more challenging instances for the problem and present
numerical experiments for both the benchmark and the new instances. Finally, we evaluate
the individual and the collective use of the valid inequalities. Computational results for the
proposed ideas and for existing solution approaches for the problem showed the effectiveness
of the new inequalities in handling the new instances, both in terms of execution times and
improvement of the linear relaxed solutions.
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1. Introduction

Some optimization problems defined on edge-colored graphs encode qualitative informa-
tion using colors (or labels), which can represent different alternatives of transportation in
multi-modal networks or types of connections in computer systems. Examples of appli-
cations can be found in genetic and molecular biology (Dorninger, (1994 Pevzner} 1995,
design of reliable networks (Yuan et al., 2005; Chang and Shing-Jiuan| |1997) and light paths
in Wavelength-Division Multiplexing (WDM) optical networks (Santos et al., [2016]). We also
refer to paths with the minimum number of obstacles in robotics (Eiben and Kanj, 2020)),
which aims at finding a path that does not cross more than a given number of different ob-
stacles. In telecommunications, there are problems related to shared risk link groups (Shen
et al., 2005; Craveirinha et al. [2023), which consider sets of links that are likely to fail
concurrently as they share physical resources.

In the literature, we find related works in this context. The Minimum Color Path Prob-
lem (MCPP), for instance, consists in finding a path between vertices s and ¢ (an (s, t)-path,
for short) with the minimum number of distinct colors. Although originally proposed for
reliable networks (Yuan et al. 2005), the problem also has applications in robotics, where
one wants to find a path between two points while traversing the minimum number of ob-
stacles. To handle the MCPP, the authors developed an O(n?/3)-approximation algorithm,
two greedy heuristics and an Integer Linear Programming (ILP) formulation.

Another example is the Single k-Multicolor Path Problem (SMPP), which aims at finding
an (s,t)-path of minimum cost using exactly k distinct colors, for a given k € Z,. The
SMPP was used to discover light paths in WDM optical networks (Santos et al.. 2016),
including two extensions of this problem, namely, the Multiple k-Multicolor Paths Problem
and the Absolute Multiple k-Multicolor Paths Problem. In the former, a solution is said to
be feasible if either each pair of paths is link-disjoint or they use different colors for every
shared link, while in the latter, only the first condition is observed. This article proposed
two branch-and-bound algorithms, two ILP formulations, and heuristics to efficiently handle

these problems.
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Lastly, we cite the Colored Path Problem, which aims at finding an (s,t)-path using
at most k distinct colors in a vertex-colored graph. It has applications in computational
geometry and motion planning (Eiben and Kanj, 2020).

In this work, we deal with the k-Color Shortest Path Problem (k-CSPP), which is NP-
Hard (Ferone et al.| [2019; Dehouche, 2020)). Consider a weighted digraph D = (V, A). Every
arc (i,7) € A has a positive cost d;; and a color ¢(7, j). Given vertices s,t € V and a positive
integer k, the k-CSPP consists in finding an (s, ¢)-path of minimum cost while using at most

k distinct arc colors. We show an instance of the problem in Fig.

Figure 1: The optimal (s,t)-path for the k-CSPP, k > 3, is s - 1 — 3 — 2 — ¢ of cost 8 having colors ¢y,
co, and c3. For k = 2, the optimal solution is s — 2 — ¢ of cost 10 having colors ¢; and cs.

Among existing solution strategies for the k-CSPP, there exists an ILP model, a spe-
cialized Branch-and-Bound (B&B) algorithm (Ferone et al., [2019) and a dynamic program-
ming (DP) approach (Ferone et al.| |[2021). We also find a pseudo-polynomial Dijkstra-based
heuristic and an instance reduction procedure (Cerrone and Russo|, [2023). Numerical results
proved that the solution approaches can solve almost all benchmark instances very efficiently.
Nevertheless, B&B and DP find troubles in dealing with new classes of challenging instances
generated following the idea proposed by [Kumar| (2019)), while the existing ILP model (Fer-
one et al., [2019) requires large execution times. This encouraged us to develop new solution
techniques to overcome the difficulty in tackling the new instances of the problem.

As the main contributions of this work, we propose new valid inequalities for the k-CSPP,
including cuts to be used in a Branch-and-Cut (B&C) algorithm. We also investigate how

the value of k impacts the difficulty of instances. Our computational experiments carried out
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on benchmark instances from the literature show that they can be easily solved after using
the reduction procedure (Cerrone and Russo|, [2023). Numerical results show the efficiency
of the proposed valid inequalities to improve the linear relaxation and the execution time to
solve new k-CSPP challenging instances. We also provide numerical results obtained with
the heuristic procedure of |Cerrone and Russo| (2023), the B&B algorithm of Ferone et al.
(2019) and the DP algorithm of |[Ferone et al| (2021)). Finally, we discuss situations where
the aforementioned heuristic procedure fails to obtain feasible solutions for hard instances.

The remainder of this text is organized as follows. Section [2| presents ILP models for the
k-CSPP. Section [3] introduces valid inequalities for the problem. Comments on literature
solution approaches are in Section Section [6] reports computational experiments and

comparative analysis. Finally, Section [7]| presents concluding remarks.

2. Problem formulations

Initially, for every vertex v € V of D = (V, A), denote the out-neighborhood (resp. in-
neighborhood) of v by Nt(v) ={i € V | (v,i) € A} (resp. N~ (v) ={i €V | (i,v) € A}).
Let C be the set of arc colors of D. The first model (FFP) for the k-CSPP is due to Ferone
et al.| (2019). Let x,,, for all (u,v) € A, be a binary decision variable to represent whether
arc (u,v) belongs to the solution (x,, = 1) or not (x,, = 0). Furthermore, for all h € C, let
yp, be a binary decision variable to determine whether color h is in the solution (y; = 1) or

not (y, = 0). The ILP model is as follows.

(FFP) min Z Ay T (1)
(u,v)EA

.

-1 ifu=s

s.t. Z Lyy — Z Tuww = +1 fu=t Voue ‘/7 (2)
vEN~(u) vENT(u)
0 otherwise
\
Ty < Ye(u,w) ) v (U, U) € A7 (3)
th S ka (4)
heC
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T € {0,1}, V (u,v) € A, (5)
y, €4{0,1}, VheC. (6)

The objective function minimizes the cost of the (s,t)-path. Flow conservation con-
straints guarantee the path connectivity. Constraints ensure that if arc (u,v) is
present in the path, then color ¢(u,v) is also used. Constraint imposes that at most k
distinct colors are in the solution. Finally, constraints (5)) and @ are the domain of the
variables. Model (FFP) has O(|V|+ |A|+1) constraints and O(|A|+|C|) decision variables.

Observe that if a given color does not belong to the solution, then all variables w.r.t.
the arcs of that color can be set to zero. Because the integrality constraints on the x
variables, the integrality on y is irrelevant.

Now, we present a new formulation for the k-CSPP that is based on a valid inequality
to cut off any infeasible path having more than k distinct arc colors. Initially, note that we

can estimate the value of y; in any (s,t)-path P according to #( ;AP Tyy, Where AP is
u,v)EA},
the set of arcs of P with color h. The set of distinct colors in P, say C'(P), must contain at

most k elements. Consequently, model (PCM) below is valid for the k-CSPP.

(PCM) min Z duvx’ufu

(u,v)€EA
s.t. , , and
1
Zm > zw<k VPeP, (7)
heC(P) (uw)eAP

where P stands for the set of all (s, t)-paths of D. When considering the worst-case scenario,
where D is complete, for each permutation of vertices there is a corresponding path. Thus,
fixed s and ¢, the number of constraints (7)) in model (PCM) is O((|V'| —2)!) and of variables
is O(|A]). Because of the possible huge number of (s,t)-paths in P, one can explore this
formulation as cuts in a B&C scheme.

To illustrate the generation of constraints for model (PCM), consider the digraph
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Figure 2: An instance of the k-CSPP for k = 2.

depicted in Fig.[2] Let s and ¢ be the source and destination nodes, respectively, and assume
k = 2. An example of unconstrained (s, t)-path for this digraph is Py = {(s,2),(2,4), (4,%)}
of cost 3 having three distinct colors (cy,¢o,¢3). For k = 2, Py is infeasible. We deduce
that at least one color within Py must remain unused in the optimal solution for the 2-
CSPP. To address this, we estimate the occurrence of any color appearing in Fy by dividing
the sum of the arc decision variables of that color by the number of arcs sharing the same
color in the path. This gives the first valid cut z9 + 224 + 24, < 2. Assume that upon
adding this cut into the model and reoptimizing it, we obtain a new infeasible path P, =
{(s,3),(3,6),(6,4),(4,t)} of cost 6. It has three colors (c1, c3,¢4). When observing that now
we have two arcs (s,3) and (4,t) of color ¢;, we obtain the second valid cut (2,3 + 2ay) +
T3 + Tea < 2. After reoptimizing the model with these two cuts, we reach the optimal

solution P* = {(s,3),(3,4), (4,t)}, which has cost 7 and contains two colors (cy, ¢z).

3. Valid Inequalities

In this section, we propose valid inequalities for the k-CSPP. Initially, we know that in

any (s,t)-path, at most one arc leaves or enters vertex u € V. Consequently,

Y ww <1, VueV\{t} (8)

Y ww <1, VueV\{s} (9)

vEN~(u)
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The second set of valid inequalities concerns arcs of same color leaving or entering a
given vertex u € V. Let C; (resp. C;) be the set of colors in the out-neighborhood (resp.
in-neighborhood) of vertex u; and R(u) be the set of vertices not reachable by u in D. Also,
denote by N, (u) (resp. N, (u)) the set of end-nodes of arcs of color h that leave (resp.

enter) u.

Proposition 1. In any (s,t)-path, the number of arcs of color h leaving (or entering) vertex

w s limited above by yp,.

Z xuvgyhv V'LLGV,VhECJ, (1())
vEN;(u)

> ww<yn, YueV,VheC,. (11)
veEN, (u)

Proof. Straightforward. Note that both and cut off fractional solutions where
two or more arcs of the same color leave or enter a given node. They strengthen some
constraints . We can extend the idea of Proposition |1| for pairs of non-reachable vertices.
This situation appears in fractional linear relaxed solutions where the digraph induced by x
variables contains sub-paths between s and t presenting vertices u and v, with v € R(u) and
u € R(v). O
Proposition 2. Consider vertices u,v € V such that v € R(u) and u € R(v). The number

of arcs of color h entering or leaving u and v is limited above by yy,.

Z Ty + Z Tui <y, Yu,v€V,veR) ue R), Vh e C, (12)

JEN; (v) iEN, (u)

Z Ty + Z T <y, Yu,v€V,veER) uec R), Vh e C, (13)
JEN; (v) i€N, (u)

Z Tjy + Z T <y, Yu,v €V, veER() uec R), VheC. (14)
JEN, (v) i€N, (u)

Proof. Consider two vertices, v and v, within the vertex set V', such that v € R(u) and

u € R(v). Since u and v cannot be mutually reachable, they cannot simultaneously appear

7
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in a feasible solution. Therefore, if color h is part of the solution, i.e., y, = 1, then in the
following scenarios, at most one arc of color h can be included in the solution: (i) departing
from both v and u, resulting in inequality (12); (i) departing from one of these nodes (e.g.,
v) and entering the other one (e.g., u), leading to inequality (13); and (iii) entering both v
and u, leading to inequality . O

In fact, the idea of Proposition [2| applies to any set S C V containing only non-reachable

vertices.

Proposition 3. Let S C V be such that for any two vertices u and v of S, v € R(u) and
u € R(v). Let Q C S. The number of arcs of color h leaving Q and entering S\ Q is limited

above by yy if color h belongs to the solution.

> wt >, D> wpu<uyn, VSCV,VQCS VheC (15)

u€Q jEN, (u) veS\Q jEN, (v)

Proof. The result follows from the fact that at most one of the arcs of a given color h incident

to the non-reachable vertices of S can belong to the solution if this color also belongs. [

Figure 3: An arc-colored digraph.

To explain Propositions [2] and [3] we examine the digraph depicted in Fig. [3] Note, w.r.t.
nodes 2 and 4, that 2 € R(4) and 4 € R(2). Arc (1,4) of color ¢; enters node 4 and
the one (2,3) of the same color leaves node 2. Thus, we can generate the corresponding
inequality from Proposition 14+ T23 < Ye,. Now, consider nodes 3 and 5, where
3€ R(4) and 5 € R(3). Let S = {3,5} and take Q = {3} C S. We have two arcs (2,5)
and (4,5) of color ¢y entering node 5, which belongs to {3,5} \ {3}. There exists one arc
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(3,6) of the same color leaving S = {3,5}. Thus, we can also generate the following valid
inequality from Proposition : Tos + Tas + 36 < Yoo

The next proposition explores the fact that if there exists an arc (u,v) where u is not
reachable by v and vertices 7 € N*(u) \ {v} that do not reach v, then only one of the arcs
of the same color, say h, leaving u and not reaching v as well as from v to N (v) can belong
to the solution. For this, we introduce new notations. Let I(u,v) = {j € N*(u) \ {v} |
v € R(j)} denotes the set of vertices in the out-neighborhood of u that do not reach v; and
L ={(u,v) € A|ue€ R(v), I(u,v) # 0} be a non-empty set of arcs such that their tails u
are not reached by their heads v and there is at least one vertex in the out-neighborhood of

u that does not reach v.

Proposition 4. For every arc (u,v) € L # 0, the number of arcs of color h € C} from u to

vertices in I(u,v) and leaving v of that color is limited above by yy.

Z Tyj + Z Ty Syn, V(w,v) €L, heE C;r' (16)
€I (u,w) ZGN;'(U)
c(u,j)=h

Proof. Consider an arc (u,v) € L. By assumption, u € R(v). For all j € I(u,v), with
v € R(j), the arcs (u,j) of any color h € C;} cannot be used in the same solution with arcs
leaving v of this color. Consequently, the sum of the corresponding x variables for these arcs

is limited above by y,. ]

We give an example of Proposition [4] for the digraph on the right side of Fig. . Arcs (s, 1),
(1,4), (2,3), (2,5) and (4,2) have non-empty sets I(s,1) = {2}, I(1,4) = {3}, I(2,3) = {5},
I(2,5) = {3} and I(4,2) = {t}. Hence, L = {(s,1),(1,4),(2,3),(2,5), (4,2)}. Thus, for the
arc (2,3) € L of color ¢, we obtain the valid inequality o5 + 23+ < ¥, .

We now extend the idea behind Proposition [4} Let us denote by W (v) = {(u,j) € A |
u € N~(v), u € R(v), j € I(u,v)} such that if («/,5') and (u”,;") are in W(v), then
j' € R(j") and j” € R(j'). Here, W(v) is the maximal non-empty set of arcs leaving the
in-neighborhood of v € V'\ {s,t} to vertices that do not reach v and satisfy the property
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Figure 4: Two arc-colored digraphs. The right one corresponds to the left digraph with the addition of the
arc (4,2).

that the head of every arc in this set is not reached by v or by the head of any other arc in
W (v). Also, denote the set of arcs of color h in W (v) by Wj(v).

Proposition 5. If W(v) # 0, for some vertices v € V' \ {s,t}, then the number of arcs of a

color h € CF in Wy (v) and those leaving v of this color is at most yp,.

Y myt Y wy <y, YveV\{st}, VheCl, Wy)#0.  (17)

(u,7)EWR(v) FEN (v)
Proof. Consider a vertex v € V \ {s,t} and a color h € C;f for which W,(v) # 0. By
definition of W (v), at most one arc of this set can belong to the solution because their heads
do not reach each other. The same is valid for the arcs leaving v. Moreover, neither these
heads reach v nor v reaches them. Consequently, at most one of all these arcs can be in

the solution and, in particular, the ones of color A if it is in the solution. Thus, the result

follows. u

We show an example of Proposition [f for the digraph on the left side of Fig. [4l For
instance, let v = 3 and consider color ¢; in Cy of the arc (3,t). We have N=(3) = {1, 2},
I(1,3) = {4} and I(2,3) = {5}. Hence, W(3) = W, (3) = {(1,4),(2,5)}. Therefore,
Tia+ Tos + 23 < Y, is a valid inequality for this instance.

The next valid inequality is based on the fact that, if two arcs (u,w) and (v,r) of the

10
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same color belong to the solution, then there must also be a (w,v)-path or a (r, u)-path.

Proposition 6. If two non-consecutive arcs (u,w) and (v,r) of the same color h belong to

the solution, then their colors also belong, and we must have at least one arc between them.

Tyw + Tor < Z Twi + Z ZTri + Yn, Vhe C’ v (u’w>’ (U,T‘) S Ah‘ (18)
iENT (w) ieNTt(r)
v€ R(i) ug¢ R(1)
Proof. Tf two non-consecutive arcs of color h, say (u,w), (v,r) € Ay, belong to the solution,

then color A must also belong. Moreover, one arc must leave w and later reach v or one arc

must leave r and later reach u. Thus, the result follows. O

If we consider an (s,t)-cut [S,V \ S] of D such that s € S, t € V'\ S, and [V \ S, S] =0,
then the sum of the arcs of color A in [S, V' \ S] is limited above by y;, according to

Y ww<uyn VSCV|seSteV\S VheCS,V\S (19)

(u,)€[S,V\S]
c(u,v)=h

4. Separation procedures for some proposed families of valid inequalities

In this section, we describe separation procedures for the valid inequalities proposed in
Section . In the following, to verify whether v € R(v) for a given pair of vertices u and v,
we construct a |[V| x |V| binary matrix 7, where T, , = 1 if u is reached by v, by running a
breadth-first search (BFS) starting from every vertex of the digraph. We employ heuristic
procedures to obtain maximal sets of non-reachable nodes, as explained below.

We derive inequalities by initiating with a singleton set S = {v} comprising pairwise
unreachable vertices, one for each v € V' \ {s,t}. For all w € V' \ {s,t,v} with label greater
than v, we include u in S if it is neither reachable by nor connected to any vertex already
present in S. Subsequently, we derive an inequality for each subset @ C S, where |Q)|
takes on values in the set {0, 1,]S| — 1,|S]}.

We generate inequalities using the CPLEX user cut callback, which is based on

the support graph associated with non-null arc variables x concerning a CPLEX B&B node

11
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solution. For each pair of arcs (u,w) and (v,r) of the same color h, within any B&B node
solution that violates the corresponding inequality for that pair, we derive an inequality .
Notably, if, for this pair of arcs, we observe that v ¢ R(i) holds for all i € NT(w), we
exclude the corresponding inequality because we can demonstrate that it is weaker than
a “modified combination” of constraints for node w.

Finally, to obtain inequalities , we first describe a randomized algorithm that com-
putes the minimum cut of a digraph (Motwani and Raghavan), [1995). The idea behind the
algorithm is to contract arcs randomly chosen until a unique arc remains. The label of the
resulting vertex of an arc contraction is the union of the set of labels of the arc extremities.
Only one arc is considered in cases of duplicated arcs or arcs in opposite directions between
a given pair of nodes. The algorithm returns the partition of vertices Vi and V5, given by
the extremities of the unique remaining arc. Given such partition, we check whether the cut
of arcs [Va, V1] is empty. If so, we add the corresponding inequality to model (FFP).
Otherwise, while [V5, V1] # (), for every arc (u,v) in this cut, we move u from V5 to V;. The

resulting partition is then used to generate that inequality. For each instance, we run the

routine 60 times to obtain 60 inequalities of this type.

5. Solution strategies from the literature

In this section, we present existing solution strategies for the k-CSPP.

5.1. The heuristic procedure of |Cerrone and Russo (2025)

Cerrone and Russo| (2023)) devised a constructive pseudo-polynomial algorithm named
Color Constrained Dijkstra Algorithm (CCDA), which is rooted in Dijkstra’s algorithm.
The underlying principle of CCDA is the iterative construction of an (s,t)-path. In doing
S0, it takes into account penalties from a predefined list of values A and applies them to arc
costs when their colors have not yet been incorporated into the evolving path.

Let Wmin, Wmean, and Wpax represent the minimum, average, and maximum arc costs

within set A. The values defining penalties in A are as follows: A are {0, Wwyin/4, Wmin/2, Wiin,

12
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2 X Wininy, Wiean /4, Wimean /2, Wimean, Wmax }- LThe modified Dijkstra’s algorithm, with penalties,
operates in a conventional manner except for how it calculates arc costs.

In ascending order, CCDA sequentially considers penalty values A € A, one at a time,
starting from the smallest and progressing to the largest. When updating the cost estimate
of the path from source s to a vertex v € V' \ {s}, if the color of arc (u,v) is absent in the
partial (s, v)-path, then the algorithm considers the penalized arc cost d,, +A. It is necessary
to keep the predecessor of each vertex as well as the list of colors in the (s,v)-path. The
algorithm is intended to stop with a feasible path when it reaches t.

The complexity of CCDA depends on that of Dijkstra’s algorithm and the number of
penalty values. A similar idea is adopted in the DP algorithm detailed hereafter.

It is worth noting that we have observed situations in which CCDA terminates without
yielding a feasible solution. The effectiveness of this heuristic hinges on the range of penalty
values defined within A. Indeed, in Fig. [f if we define A C [0,3] as [Cerrone and Russo
(2023) suggest, then for every A € A, CCDA always returns the path s — 3 — 4 — ¢ of
three colors. This becomes problematic when k£ = 2. To overcome this drawback, we allow
the maximum value of A\ to exceed the highest arc cost in the digraph, e.g. 2 X wyay. In the
example from Fig. f, with A = 6, CCDA successfully identifies the optimal two-color path

s—1—2—t.

1+ A

Figure 5: Digraph instance for which the CCDA heuristic fails obtaining a feasible (s, t)-path with at most
k = 2 colors if we adopt penalties from the interval A € [0,3]. The notation on each arc (u,v) is dy, + A,
except for the arc (2,t) of cost 3 because its color is the same as the one of the arc (s, 1).
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5.2. The Branch-and-Bound procedure of |Ferone et al.| (2019)

The approach used in the B&B procedure by Ferone et al.| (2019)) for the k-CSPP involves
solving a shortest path problem for each node in the search tree. This is achieved by rec-
ognizing that relaxing constraints and transforms the model (FFP) into a standard
shortest path formulation. When a node solution utilizes more than k colors, one refrains
from using arcs associated with some colors within the solution and compute the shortest
path within the resulting subgraph, excluding the forbidden colors.

Let z; denote the solution of the i-th B&B node generated in the search tree. If |C(z;)| >
k, we divide this node into |C(z;)| subproblems, one for each color present in z; that is
required not to be part of the solution. The order of generation of these nodes is determined
by the absolute frequency of colors in z;, with the less frequent colors being removed first.
One updates the incumbent solution whenever a feasible path with a better solution value
is discovered. We alert that this “B&B procedure” possibly generates non-disjoint regions

of feasible solutions for the subproblems in the search tree.

5.8. The dynamic programming algorithm of |Ferone et al.| (2021))

The label-setting DP algorithm of |Ferone et al.| (2021) relies on the concepts of feasible
and dominated paths. Let P, denote an (s,u)-path. Define P(u) as the set of all paths
from s to u. A path P, is said to be feasible if |C(P;,)| < k. Given two paths P, and
P!,, path P, is said to dominate P/, if C(P,,) € C(P/,), d(P;,) < d(P},), and at least
one of these conditions is strict. Dominance conditions avoid exploring unfruitful paths.

The algorithm retains a record of all feasible and non-dominated paths, denoted as F ,,
for each node u within the digraph throughout its execution. Additionally, it manages
a queue of paths currently under construction, which may expand arbitrarily. Given the
potential volume of paths stored in memory, a good label extraction policy is necessary.

Five extraction rules were proposed. The first one is a Dijkstra-like rule (DR), where the
next path to be explored is the one of minimum cost. A standard First-In First-Out (FIFO)
rule — where the extracted path is the one in the queue for the longest time — and a Last-In

First-Out (LIFO) rule — where we extract the last path inserted in the queue — were also
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explored. The fourth rule is the Small-Label-First (SMF). In this rule, every time a new
path P is to be added to the list of paths to a node, one checks if d(P) < d(P’), where P’
is the path currently at the head of the list. If the condition is satisfied, P is placed at the
head of the list, otherwise it is placed at its tail. The last rule is the A* one, which selects
the path P that minimizes d(P) + w(last(P),t), where w(last(P),t) represents the shortest

path value between the last visited node in P, denoted as last(P), and the target node ¢.

6. Computational results

In this section, we present numerical experiments performed on a PC Intel Core i7-3770,
8 x 3.40 GHz, 16 GB DDR3 RAM with Ubuntu 20.4 LTS 64 bits. We use Julia 1.8.5 with
JuMP package to implement models for CPLEX 22.1 configured with one thread. The time
limit for each instance is set to 1800 seconds.

We adopt benchmark instances (grid and random digraphs) from the literature (Ferone
et al. 2019) and generate novel classes (groups) of layered-based digraphs, as similar in-
stances showed to be hard to handle for the MCPP (Kumarj [2019). Each layered digraph
is composed of w layers of r vertices per layer, in addition to source s and destination ¢
vertices. The source s connects to every vertex of the first layer, while all the vertices in the
last layer connect to the destination ¢. In a standard layered digraph, there is an arc from
every vertex of layer ¢ to every vertex of layer ¢+ + 1, with ¢ :=1,--- Jw — 1.

We generate 60 new instances (available under request) for the problem, divided into
three groups of 20 instances. All the new test-bed digraphs have 2 + 15 x 10 vertices: a
source, and a destination, as well as w = 15 columns (layers) with r = 10 vertices each one.

The groups are categorized as follows:

e Group 1 contains standard layered digraphs with wr + 2 vertices and 2r + (w — 1)r? =

1420 arcs. We uniformly choose their arc costs from the integer interval [1, 1000];

e Group 2 is composed of modified layered digraphs. We first generate a digraph as
those of Group 1. Then, we create an arbitrary number (from the integer interval

(10, 30]) of jump-arcs. To obtain a jump-arc (u,v), we randomly choose v and v from
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non-neighbor layers L; and L;/, respectively, with i < ¢/. We uniformly choose the cost
of a jump-arc from the integer interval [dmax, dmax + 30000], where dpayx is the highest
arc cost among non-jump-arcs. The idea behind using a few jump-arcs with high costs

is to allow the heuristics to easily find a feasible (possibly costly) path;

Group 3 has digraphs as those of Group 1, but initially with an empty set of arcs. For
each layer L;, i :== 1,--- ,w — 1, we select at random 3 distinct vertices and form a
directed clique @); with them. Then, for each pair of vertices (u,v), where u € ); and
v € L; — Q;, we create arcs (u,v) and (v,u) with probability p = 1/2. Finally, we add
an arc from every vertex of layer L;, except from the vertex with the smaller label of
Q;, to every vertex of layer L; . All arc costs of this group are chosen from the integer
interval [1,1000]. This digraph topology aims to allow any (s,t)-path to pass through
an internal arc of the layers. The number of arcs in any feasible path for this group
can be at most the number of layers more than those for the instances of Group 1.
The likelihood of a path utilizing an internal arc within a layer is not insignificant. To
illustrate this, let us begin by recalling that in a clique @); within a layer L;, the vertex
with the smaller label lacks an arc connecting it to the subsequent layer, L;,,. If the
path accesses a layer through a vertex that does not belong to its clique, it will not
traverse an internal arc within that layer. However, if the path utilizes one of the three
vertices in ();, we encounter two distinct scenarios. In the first scenario, if the path
reaches the vertex with the smaller label in @);, the likelihood of utilizing an internal
arc corresponds to the probability of selecting that particular vertex from among the r
vertices within the layer, i.e., % In the second case, when the path uses one of the two
remaining vertices within the clique, each of these vertices is internally connected to
the other two vertices within ); and approximately half of the remaining » — 3 nodes
within the same layer. This is because we adopt a probability of p = 1/2 to establish
an internal arc in each layer. Additionally, these vertices are externally connected to
r vertices in the subsequent layer L;.;, where i < w. Consequently, the probability

of employing an internal arc in this scenario is 2( 2 . Therefore, the cumulative

t5 )
r+2+152
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likelihood of a path utilizing an internal arc within a layer, excluding the final layer, is

5143
r(3r+1)°

calculated as Since paths within this group can have (and explore) a greater
number of arcs compared to those in Groups 1 and 2, this particular set of instances

is designed to be the most challenging for the problem.

Arc colors of our new instances are chosen based on a uniform distribution over the
integer interval [1, |C|], where we set |C| = [|A|/4]. Finally, we define k£ as the minimum
number of colors allowing an (s, t)-path, obtained after solving the MCPP for each instance
individually. For instances of Group 2, we evaluate the MCPP in the digraph without
jump-arcs. Both choices for |C| and k are based on an extensive set of preliminary tuning
experiments. Given the shortest (s, t)-path having &’ colors, for values of k > k' the k-CSPP
is easy. To give an idea of the problem difficulty (in terms of cpu execution time) for values
of k < k" and distinct values of |C|/|A|, we depict some related experiments in Fig. [6] for four
layered digraphs obtained as those of Group 1 with the same number of vertices and arcs.
The axes in Fig. [f] represent the color density |C|/|A|, the maximum number of colors k in
the solution path, and the execution time in seconds cpu. We observe that the instances
require higher computational time when |C|/|A| € (0.25,0.55] and the k values are equal to
the minimum number of colors related to the MCPP solutions for these digraphs.

Tables [1] and [2] provide information regarding the characteristics of the new instances
from Groups 1, 2, and 3, as well as the random and grid digraphs (Ferone et al [2019). I
these tables, we identify each instance with a label inst. They receive labels from 1 to 60 in
Table . In Table , the instance identifier corresponds to the original instance name (Ferone
et all [2019). In Table [1] all instances have |V| = 152 vertices, while the number of arcs
|A| varies across different groups. The limit on the number of colors is k, and the known
optimal solution value is opt. To enhance efficiency, we employ a graph reduction algorithm,
which eliminates arcs proven to be unnecessary for the optimal solution based on feasible
solutions obtained through the CCDA heuristic (Cerrone and Russo, 2023). We use the
heuristic solution in the CPLEX solver as a cutoff value. For the instances where we have

a reduction on their size, R(V) and R(A) denote, respectively, the reduced set of vertices
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Figure 6: Variation of execution time in function of |C|/|A| and k for 4 layered digraphs.

and arcs. We have to mention that the reduction algorithm was not able to remove any arc

or vertex of the instances of Groups 1, 2, and 3. In contrast, in line with findings reported

by |Cerrone and Russo| (2023), we verify a drastic reduction on the number of vertices and

arcs for the benchmark instances of [Ferone et al. (2019)).
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Group 1

inst |Al k opt

Group 2

inst |A| k opt

Group 3

inst |Al k opt

11420 6 9242
2 1420 7 6358
3 1420 7 5953
4 1420 7 5056
51420 7 6495
6 1420 7 5382
71420 7 6774
8 1420 7 6345
9 1420 7 4086
10 1420 7 7052
11 1420 7 6128
12 1420 7 6097
13 1420 7 5541
14 1420 7 4981
15 1420 7 6572
16 1420 7 5434
17 1420 7 7386
18 1420 7 5102
19 1420 7 5885
20 1420 7 5793

21 1430 7 6470
22 1447 7 6211
23 1439 7 5897
24 1435 7 5602
25 1444 7 7288
26 1431 7 6824
27 1434 7 6969
28 1434 7 6956
29 1430 7 5186
30 1445 7 4763
31 1445 7 6550
32 1435 7 7029
33 1438 7 5600
34 1442 7 6102
35 1440 7 7624
36 1441 7 5124
37 1449 7 6778
38 1438 7 5761
39 1435 7 5006
40 1440 7 6845

41 1704 7 7909
42 1722 7 8503
43 1692 7 7400
44 1698 7 7838
451720 7 7736
46 1672 8 6293
47 1676 8 4963
48 1692 8 5458
49 1690 8 4447
50 1700 8 5095
51 1652 7 6737
52 1692 8 4636
53 1688 8 5596
54 1686 8 4632
55 1680 8 5335
56 1680 8 5222
57 1660 8 4852
58 1704 8 4785
59 1662 8 6132
60 1716 8 5974

Table 1: Details about the instances of Groups 1, 2, and 3.

Table 2: Details about the benchmarks instances for random and grid digraphs (Ferone et al., |2019)).

Random Grid
inst VI |4 |R(V)| |R(A)| k opt inst VI Al |R(V)| |R(A)| k opt

R1-27190 75000 750000 16 16 8 242 G1-27000 10000 39600 627 1648 195 6131
R1-27191 75000 750000 35 39 6 201 G1-27001* 10000 39600 209 424 197 6233
R1-27195* 75000 750000 13 13 6 152 G1-27002 10000 39600 402 956 191 6336
R1-27197 75000 750000 12 12 6 253 G1-27003 10000 39600 423 922 196 6200
R1-27199 75000 750000 22321 99827 5 333 G1-27004 10000 39600 256 580 195 6375
R1-27200 75000 750000 120 147 6 236 G1-27005 10000 39600 248 578 197 6079
R1-27202 75000 750000 80 92 8 253 G1-27006 10000 39600 281 624 193 6109
R1-27203 75000 750000 17 20 5 255 G1-27007 10000 39600 220 462 198 6197
R1-27204 75000 750000 24808 119208 5 401 G1-27008 10000 39600 214 442 191 6193
R1-27205 75000 750000 33203 190490 6 426 G1-27009 10000 39600 247 540 196 6181
R2-27001 75000 750000 80 93 6 289 G3-27000 20000 79400 380 812 312 9808
R2-27004 75000 750000 27 29 6 246 G3-27001 20000 79400 514 1154 294 9786
R2-27005 75000 750000 23 25 6 198 G3-27002 20000 79400 489 1126 291 9652
R2-27007 75000 750000 33 38 6 231 G3-27003 20000 79400 323 672 305 9448
R2-27008 75000 750000 15 157 196 G3-27004 20000 79400 1145 2884 295 10149
R2-27010 75000 750000 148 180 5 246 G3-27005 20000 79400 437 1040 296 9793
R2-27012 75000 750000 26 28 7 245 G3-27006 20000 79400 688 1520299 9654
R2-27015 75000 750000 56 65 6 238 G3-27007 20000 79400 319 664 293 9535
R2-27018 75000 750000 61 74 6 219 G3-27008 20000 79400 371 818 295 9455

- - - - - - - (3-27009 20000 79400 2013 6654 296 9424

* The shortest path solution is feasible for the k-CSPP.
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6.1. Computational results for CCDA, DP, BB, and the BEC algorithms

In Table 3] we report numerical results for the CCDA heuristic (Cerrone and Russo,
2023), the Dynamic Programming (DP) procedure (Ferone et al., 2021)), the Branch-and-
Bound (B&B) algorithm (Ferone et al., 2019), and for our Branch-and-Cut (B&C) based
formulation (PCM). The legend includes the instance identifier inst, the heuristic solution
ub, the number of colors in the path, and the execution time cpu (in seconds) for each
solution approach. The time limit for CCDA was 10 seconds, and for DP, B&B, and (PCM)
it was 1800 seconds. The number of generated nodes in the B&B (resp. CPLEX B&C) tree
is denoted by bb (resp. bc). For model (PCM), we also report the number of generated
cuts . We separate results for each group of instances by horizontal lines. In the last four
lines of each group, we report statistic values of average, median, maximum, and minimum

values of each column. The last lines of this table refer to the overall related statistics.

Table 3: Numerical results for CCDA, DP, B&B, and the mathematical formulation (PCM) for the bench-
mark grid and random digraphs and the instances of Groups 1 and 2.

CCDA DP B&B PCM
Instance ub cpu  colors cpu bb cpu be cuts cpu
R1-27190 242 1.6 6 0.8 10 63.2 0 1 1.0
R1-27191 201 2.1 6 0.5 12090  1800.1 4 10 1.5
R1-27195 152 1.1 6 0.5 0 61.0 0 0 0.1
R1-27197 253 1.2 5 0.5 8 64.2 0 1 0.1
R1-27199 333 5.1 5 1.5 10103  1800.2 6508 2439  1800.0
R1-27200 236 5.1 6 0.5 10386  1800.4 39 30 3.7
R1-27202 261 4.4 7 0.5 49 120.8 12 12 1.9
R1-27203 255 4.4 5 0.5 17 83.6 0 2 0.2
R1-27204 401 5.5 5 14 11719  1800.5 4737 1759  1800.0
R1-27205 426 6.1 6 3.8 11361  1800.8 3730 2008  1800.0
R2-27001 289 5.0 6 0.5 8 74.2 6 13 3.7
R2-27004 246 2.0 6 0.5 10275  1800.3 0 2 0.3
R2-27005 198 2.6 5 0.6 9882  1801.2 0 8 1.1
R2-27007 231 3.1 6 0.5 365 523.3 8 6 0.7
R2-27008 196 2.6 6 0.5 9 75.9 0 1 0.2
R2-27010 246 5.0 5 0.5 11219  1800.0 48 32 3.2
R2-27012 245 1.3 6 0.5 81 174.3 0 2 0.3
R2-27015 238 3.3 6 0.5 9176  1800.7 11 13 2.2
R2-27018 219 3.4 5 0.5 10404  1800.7 22 17 2.4
Average 256.2 3.4 5.7 0.8 5640.1 1012.9 796.1 334.5 285.4
Median 245.0 3.3 6.0 0.5 9176.0 1800.0 6.0 10.0 1.5
Max 426.0 6.1 7.0 3.8 12090.0 1801.2 6508.0 2439.0 1800.0
Min 152.0 1.1 5.0 0.5 0.0 61.0 0.0 0.0 0.1
G1-27000 6150 0.3 194 5.2 3197 250.5 2803 2296 26.5
G1-27001 6233 0.1 197 0.0 1810 74.3 3 10 0.4
G1-27002 6336 0.2 189 5.4 193 9.4 2170 674 7.3
G1-27003 6203 0.2 194 0.3 198 16.4 262 120 0.6
G1-27004 6375 0.2 195 0.6 601059  1800.0 297 150 1.3
G1-27005 6079 0.2 197 2.8 2195 136.7 665 401 2.3
G1-27006 6109 0.2 193 0.7 11956 856.2 327 174 0.8
G1-27007 6197 0.2 198 0.1 1000 76.5 8 9 0.1
G1-27008 6193 0.1 191 0.0 4456005  1800.1 0 4 0.0



G1-27009 6183 0.1 195 0.1 395 15.9 35 15 0.1
G3-27000 9808 0.3 311 3.8 2507 224.1 166 121 0.7
G3-27001 9792 0.5 294 4.3 1371007  1800.1 1684 633 12.5
G3-27002 9655 0.6 291 9.2 3346226  1800.2 3401 1211 12.7
G3-27003 9448 0.3 303 0.3 307 28.3 23 21 0.3
G3-27004 10162 0.5 295 6.7 3410843  1800.0 182 61 2.2
G3-27005 9793 0.5 296 12.5 60081  1800.0 5138 1282 21.0
G3-27006 9661 0.3 293 0.1 301 33.9 21 11 0.2
G3-27007 9535 0.2 298 0.2 696583  1800.1 10 8 1.4
G3-27008 9455 0.3 295 1.2 3283010  1800.1 183 92 2.0
G3-27009 9521 0.5 289 1.1 3324766  1800.1 332 98 4.0
Average 7944.4 0.3 245.4 2.7 1028682.0 896.1 885.5 369.6 4.8
Median 79115 0.3 243.5 0.9 7576.5 553.3 222.5 109.0 1.3
Max 10162.0 0.6 311.0 12.5 4456005.0  1800.2 5138.0  2296.0 26.5
Min 6079.0 0.1 189.0 0.0 193.0 9.4 0.0 4.0 0.0
GP1-01 - - - 85.9 - - - - -
GP1-02 - - - 1010.1 - - - - -
GP1-03 - - - 846.0 - - - - -
GP1-04 - - - 845.0 - - - - -
GP1-05 - - - 774.8 - - - - -
GP1-06 - - - 957.0 - - - - -
GP1-07 - - - 848.5 - - - - -
GP1-08 - - - 727.9 - - - - -
GP1-09 - - - 475.1 - - - - -
GP1-10 - - - 782.0 - - - - -
GP1-11 - - - 854.1 - - - - -
GP1-12 - - - 889.9 - - - - -
GP1-13 - - - 923.6 - - - - -
GP1-14 - - - 664.5 - - - - -
GP1-15 - - - 986.7 - - - - -
GP1-16 - - - 822.6 - - - - -
GP1-17 - - - 837.3 - - - - -
GP1-18 - - - 877.5 - - - - -
GP1-19 - - - 984.9 - - - - -
GP1-20 - - - 775.8 - - - - -
Average - - - 798.5 - - - - -
Median - - - 845.5 - - - - -
Max - - - 1010.1 - - - - -
Min - - - 85.9 - - - - -
GP2-21 19579 0.4 3 856.6 - - - - -
GP2-22 51145 0.0 4 810.7 - - - - -
GP2-23 27388 0.0 5 957.5 - - - - -
GP2-24 23087 0.0 6 915.6 - - - - -
GP2-25 51876 0.0 5 814.5 - - - - -
GP2-26 19473 0.0 4 827.6 - - - - -
GP2-27 20394 0.0 6 738.7 - - - - -
GP2-28 54286 0.0 4 802.5 - - - - -
GP2-29 30249 0.0 6 976.2 - - - - -
GP2-30 21169 0.0 4 727.2 - - - - -
GP2-31 35305 0.0 5 834.6 - - - - -
GP2-32 30744 0.0 4 818.9 - - - - -
GP2-33 26077 0.0 3 767.3 - - - - -
GP2-34 27487 0.0 3 849.2 - - - - -
GP2-35 22731 0.0 4 1118.9 - - - - -
GP2-36 18497 0.0 4 729.1 - - - - -
GP2-37 29485 0.0 3 1061.9 - - - - -
GP2-38 27833 0.0 6 775.5 - - - - -
GP2-39 21346 0.0 3 765.9 - - - - -
GP2-40 27264 0.0 3 875.3 - - - - -
Average 29270.8 0.0 4.3 851.2 - - - - -
Median 27326.0 0.0 4.0 823.3 - - - - -
Max 54286.0 0.4 6.0 1118.9 - - - - -
Min 18497.0 0.0 3.0 727.2 - - - - -
Global Average 4198.9 1.8 128.6 271.8 530276.9 953.0 841.9 352.5 141.5
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Global Median 6079.0 0.6 189.0 1.5 9176.0 856.2 23.0 17.0 1.4
Global Max 10162.0 6.1 311.0 1010.1 4456005.0  1801.2 6508.0 2439.0 1800.0
Global Min 152.0 0.1 5.0 0.0 0.0 9.4 0.0 0.0 0.0

The CCDA heuristic reaches the optimal solution values for 29 out of 39 instances from
the literature. The heuristic fails to find feasible solutions to the instances of Groups 1 and
3 and, for these of Group 2, CCDA does not reach any optimal solution value.

Regarding the DP algorithm, it fails to find the optimal solution for all instances of
Group 3 in the imposed time limit. Our implementation employs the A* extraction policy,
which is recognized for its superior performance in the literature (Ferone et al., [2021). To
obtain the values m(u,t) for all u € V' we run Dijkstra’s algorithm in the reverse network,
starting from ¢. The reverse network of D is a digraph D' = (V, A") for A’ = {(v,u) |
V (u,v) € A}. The arcs in the reverse network preserve the same costs as the original arcs
in D. The stopping criterion for the DP algorithm, in addition to the time limit, is to reach
the known optimal solution for the instance.

As pointed out by |Ferone et al.| (2021)), Table reveals that, on average, the DP algorithm
runs in negligible time for random and grid digraphs. These benchmark instances have proven
to be quite manageable for the DP algorithm. However, when it comes to the new instances,
we observe that the average computational time is significantly higher than that w.r.t. the
benchmark instances from the literature. Notably, the DP algorithm exhibits a 6.6% increase
in cpu time for Group 2 in comparison to Group 1. Due to memory limitations and time
constraints, the DP algorithm either runs out of memory or reaches the time limit for all
instances within Group 3. Because of this, we do not present results for this group.

Concerning the B&B algorithm, we adopt the BFS node evaluation policy in the search
tree, since it presents the best numerical results (Ferone et al.| 2019)). The B&B algorithm
was not able to find an optimal solution in the time limit for any instances of Groups 1, 2,
and 3. The algorithm failed to discover an optimal solution for 7 out of 19 random instances
and for 11 out of 20 grid instances. We remark that the instance reduction algorithm helps
to improve the number of proven optimal solutions compared to the results of |Ferone et al.

(2019), where the B&B algorithm found the optimal solution for 10 (resp. 8) random (resp.
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grid) instances.

With respect to the B&C based formulation (PCM), if a path does not violate the limit
k on the number of colors, then it is optimal to the k-CSPP. Otherwise, we add the corre-
sponding violated cut to the current model (PCM) and solve it with the B&C module
of the IBM CPLEX solver. We use lazy callbacks to cut paths violating inequalities .
The stopping criterion is based on reaching either the time limit or obtaining the optimal
solution for the k-CSPP.

Excepting for three instances from the literature, the remaining ones were solved to
optimality. Three random instances (R1-27199, R1-27204, and R1-27205) reached the time
limit (they did not benefit significantly from the reduction algorithm) with a CPLEX lower
bound far from their optimal solution values of 39.62%, 34.08%, and 40.97%, respectively.
For the remaining 16 random instances, the model run with an average cpu time of 1.4
seconds and an average number of cuts @ of 9.4. For grid digraphs, the B&C approach
solved all of them to optimality. They presented average values of cpu time, cuts , and
CPLEX B&C nodes, of 4.8 seconds, 369.6 cuts, and 885.5 nodes, respectively. We remark
that 9 instances (8 random and 1 grid) were solved at the root node of the B&C tree with
no generation of cuts @ Concerning the new instances of Groups 1, 2, and 3, solving them
with the B&C approach for model (PCM) was not possible as the Ubuntu operating system

aborted all executions of the CPLEX solver for these groups of instances.

6.2. Results for model (FFP) with valid inequalities

In this section, we discuss the impact of the valid inequalities from Section [3| for model
(FFP). In Table , we report computational results for random and grid instances (Ferone
et al., 2019), and the new ones from Groups 1, 2, and 3. The first column Ineq indicates the
set of inequalities we add to the model (FFP). In the initial set of rows, we display various
statistics for each set of test-bed instances in the second column. This includes the average
values of the optimal solutions denoted as opt, along with the average number of colors in
these solutions. Additionally, we provide data on the average cost of the shortest paths,

labeled as sp, for these instances, along with the average number of colors in these shortest
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paths, represented as spc.

For each combination of valid inequalities we add to model (FFP), from the second to
the last group of rows, we present their impact on the average linear relaxed value z, and
the corresponding average cpu, time; the average cpu timeﬂ to solve these instances and the
average number of CPLEX B&B nodes bb; and finally, when inequalities are present,
we also present the average number of cuts added to model (FFP) by a CPLEX user-cut
callback. Average execution times equal to zero means values less than 0.05 seconds. We
separate results for distinct groups of inequalities by a horizontal line. For instance, we
report results for the set of constraints defining model (FFP) in the second group of rows.
The second set of experiments is for model (FFP) with the addition of inequalities (19). We
show in bold the best results for z,, cpu, and bb for the new instances. The reader is referred
to a supplemental material for individual results for all test-bed instances.

With regard to the benchmark instances (Ferone et al.,[2019)) in Table , we observe that
the valid inequalities cannot improve their average linear relaxed values and present small
differences in both cpu, and cpu times w.r.t. model (FFP). All these instances were solved at
the root node of the B&B search tree (bb = 0.0), with their average shortest path cost being
very close to the optimal linear relaxed and integer values (for random instances, opt = 255.8
and sp = 201.8, while for grid ones, opt = 7936.9 and sp = 7929.1). This also occurs for
the average number of distinct colors in the shortest path solutions (for random instances,
colors = 5.7 and spc = 8.1, while for grid ones, colors = 246.3 and spc = 248.5). On the
other hand, for the new instances, on average, the shortest path sp is far from the optimal
solution values opt. This is also true when comparing colors with spc of these instances.

In Table [d we note that our instances require more average cpu times than the bench-
mark ones, despite their original dimensions. Furthermore, their average linear relaxation
gaps (100(opt — z,.)/z.), in percentage, are 119.8%, 112%, and 100% for Groups 1, 2, and 3,

respectively. When examining the individual application of distinct sets of inequalities,

For the instances of Group 3, model (FFP) fails to find the optimal solution for 2 instances,

while the models (FFP)+(I0)(II), (FFP)+(1), (FFP)+(16), (FFP)+(I7), (FFP)+(I9), and finally
(FFP)+(15) (T7) (18) (19) fail to solve exactly one instance each.
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Table 4: The impact of the valid inequalities for model (FFP) for benchmark (Ferone et al.| [2019)) and the
instances of Groups 1, 2, and 3.

Ineq Random Grid Group I Group 2 Group 3

opt . . . ) )

sp 2018 79201 1007.0 11094 10803

Average features "o 57 04613 7.0 6.7 77
spc 81 2485 157 161  17.0

Zr 2535 79349 27679 29384 2088.4

cpu, 2.9 0.1 0.1 0.1 0.1

(FFP) cpu 20 01 6000 4913 8642
bb 0.0 00 20577.4 180051 42479.2

Zr 2535 79349 30989 326I.2 3I15.1

cpUy 2. 1 0.0 0.0 0.0

+(19) cpu 2. 1 1106 1104 4139
bb 0 0 43083 43636 120272

Py 2. 0 02 02 02

+(T®) cpu 2. 2 1151 1821 4354
bb 0. 0 18536 28048 8430.6

cuts 0. 0 204365 36680.0 35234.7

Zr 2535 79349 29913 3155.8 3023.0

cp, 2. 1 01 01 0.1

+(17) cpu 2 1 2468 2002 6776
bb 0. 0 107977 7766.3 30258.5

Zr 2535 793490 20556 3122.0 30188

cpuy, 2 1 0.1 0.1 0.1

+(16) cpu 2. 1 2051 2220 7422
bb 0. 0 122241 86862 33156.6

Zr 2535 79349 31069 3264.8 3057.7

Py 2. 1 0.1 0.1 01

+(13) cpu 2 1 1138 1146 6347
bb 0. 0 42579 46575 28757.6

Zr 2535 79349 3098.6 3255.6 3052.0

Dy 3 . 0.1 0.1 01

+@@E@ED 5, 3 0.2
bb 0 52145 5215 279175

Zr

cpu, 0.1 0.1 0.1
+0) 1) cpu 5419 4320 7320
bb 245810 15902.6 351502

1
1
0
.9 3297.6 3440.4 32846
.0 0.2 0.2 0.1
1
0
0

PA

cpu,
+(15)(L7)(18) cpu 722 83.3 303.7
... bb 16415 1698.3 5088.6

cuts .0 13707.0 15739.4 18663.2
Zr 2535 79349 3288.3 34356 3286.5

N
ol

© N O COWNWOwWW ! ¢

COVLUIUTOONOUIOOOULIUTIOOCOUTIOWWITOWUTO LLUIO VLU LUIUTO LW

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1
0.1 1544 1329 58
0.0 1
0
0
0
4
0
0
0
0
0
0
0
0
4
0
0
0
0

Py 0. 0 0.0 0.0 0.0
+@) AR}  cpu 2. 2 458 76.4 33438
bb 0 0 1117.2 1630.5 71853
cuts 0 0 92883 14656.4 30521.2
Zr 2535 79349 3297.6 3440.4 3288.8
CpUy 2 .0 0.4 0.5 0.4
(TN TV TR)(TO) cpu 2 2 874 1166  467.1
bb 0 0 1261.8 1682.6 5378.1
cuts 0. 0 174487 24721.3 48055.2

set yielded the most favorable outcomes across these three groups in terms of linear re-
laxation and the number of B&B nodes. Conversely, the set of inequalities delivered the
most efficient cpu times. Indeed, for Groups 1, 2 and 3, we observe an improvement on cpu
times in comparison to the one of model (FFP) of up to 81.57%, 77.52% and 52.10%, respec-
tively. Concerning the combined use of valid inequalities, the models (FFP)+

25



452

454

455

456

457

458

459

460

461

462

464

465

466

467

468

469

470

and (FFP)+(L5) (17) (18) (19) both obtain, on average, the strongest linear relaxed values for
Groups 1 and 2, while the latter obtained the best results for Group 3. For the number of
B&B nodes, the best result is attained by model (FFP)+ for Groups 1 and 2,
while model (FFP)+(15)) (L7) (18) reached the smallest number of B&B nodes and cpu times
for Group 3. We highlight that the linear relaxation gaps for model (FFP)+
are 84.5%, 81%, and 81.7% for Groups 1, 2, and 3, respectively.

We remark that all proposed inequalities for model (FFP) improve its linear relaxation
when handling the new instances. Since inequalities dominate the ones —,
which, in turn, dominate inequalities and , as well as inequalities dominate the
ones , we do not report results for models combining these dominated inequalities. With
respect to execution times for instances of Groups 1 and 2, compared to those obtained by the
DP algorithm, model (FFP)+(L7)([18)(19) provides an improvement of 94.26% and 91.02%,
respectively. We emphasize that the DP algorithm is unable to find optimal solutions for
instances of Group 3 within the time limit, while this model obtained the optimal solution
for all these instances. For grid and random instances, the DP procedure presents an increase
of 96.15% and an improvement of 96.29% of execution times, respectively, in comparison to
this model.

Table 5: Statistics of the relative integrality gap (ratio) between optimal and linear relaxed solutions of
variations of model (FPP) for Groups 1, 2, and 3.

Ratios
Group 1 Group 2 Group 3
Ineq Mean Median Max Min Mean Median Max Min Mean Median Max Min

119.8 118.3190.551.1 112.6 106.5172.166.7 989 89.0173.0 62.1
96.2 96.3153.037.8 915 841149.353.8 903 83.4164.6 559
88.6 90.0137.136.7 855 7951353463 828 78.3147.850.6
103.4 100.8 163.241.1 98.1 90.6 159.7 56.7 93.0 85.8 163.0 61.1
1059 103.7 165.6 43.3 100.2 91.8 163.3585 93.4 87.3 161.7 60.8
957 96.1152.4374 913 84.0149.353.8 949 84.7170.4 58.3
(14) 96.2 96.5153.0379 91.8 8431504543 953 86.2170.4 5538
118.1 116.3189.850.9 111.3 1049 172.166.0 976 89.7172.7 61.9
(118) 84.1 83.9133.1331 81.6 76.1132.443.9 81.0 75.1147.850.4
(19) 846 8431335331 818 76.1132.4439 80.8 75.1147.850.4
i|i 84.1 83.91331331 81.6 76.11324439 79.8 74.1147.8350.4

Table [5| reports statistics results for Groups 1,2, and 3, as “Mean”, “Median”, maximum

“Max”, and minimum “Min” ratio values relative to the integrality gap (100(opt — z,)/z,) of

26



471

472

474

475

476

477

478

479

481

482

483

484

485

486

487

488

489

491

492

493

494

495

496

497

498

the instances when solved with the use of valid inequalities for model (FPP). We highlight,
in bold, the smallest mean and median values for each group. We observe, considering
the models from (FFP)+(19) to (FFP)+(10) (11)), that inequalities provide the smallest
mean and median ratios for all the three groups. Concerning the joint use of valid inequalities
in the last three lines of this table, we note a slight difference between the mean and median
ratios of the three groups. Globally, model (FFP)+ obtained the smallest

mean and median ratios.

7. Conclusions

In this work, we proposed valid inequalities for the k-Color Shortest Path Problem (k-
CSPP) and showed that they strengthen the existing formulation (FFP) (Ferone et al.
2019)) for this problem. One of the exponential-size set of valid inequalities was explored
as a B&C algorithm for the k-CSPP, referred to as model (PCM). We also reproduced the
instance reduction procedure of |Cerrone and Russo (2023)) and pointed that the Dijkstra-
based heuristic CCDA can fail finding a feasible solution for the k-CSPP depending on the
penalties adopted by this heuristic.

We observed that CPLEX finds no difficulty in solving the benchmark instances (Ferone
et al., [2019) at the root node of its B&B search tree with model (FFP). This, because
the reduction procedure drastically reduces the large dimensions of almost all instances
(excepting for three of them). Their linear relaxed and optimal solution values are very
close to the solution of their shortest paths. This motivated us to propose three groups of
more difficult instances for the problem. The CCDA heuristic fails finding a feasible solution
for Groups 1 and 3 of the new instances, and the quality of the solutions obtained for the
instances of the Group 2 are far from the optimal ones. Moreover, the reduction procedure
was not, able to reduce the number of arcs and vertices of these new instances. The values
of the linear relaxed and optimal solution values are not close to the solution of the shortest
paths for these instances.

Concerning the numerical results, for the new instances, inequalities individually

obtain the best improvement on the linear relaxation of model (FFP) as well as on the
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reduction of the number of evaluated CPLEX B&B nodes. On the other hand, inequali-
ties obtain the smallest cpu times to solve these instances. Considering the combined
use of the proposed inequalities, models (FFP)+(15)(17)(18) and (FFP)+(L5) (17 (18 ([19)
obtained the best results for Groups 1 and 2, while the latter model attained slightly better
results for Group 3. We emphasize that the B&B procedure (Ferone et al., 2019)) fails to find
the optimal solution for all the new instances, while the DP algorithm (Ferone et al., |2021))
fails to find the optimal solutions for the instances of Group 3. Although DP algorithm finds
optimal solutions for Groups 1 and 2, it requires more computational time compared to the
mathematical models. We remark that despite the improvement on the linear relaxed solu-
tions, they are still far from their optimal solutions. Thus, indicating that further research
can be done in this direction.

As future research, we intend to handle problems like the MCPP with the proposed
inequalities, and investigate whether they can be further strengthened. It seems that maxi-
mal cliques of non-reachable arcs (or colors) can be used to obtain facets of the polyhedron
associated with model (FFP). Additionally, exploring more complex graph structures to ad-
dress the k-CSPP remains an ongoing research challenge. While layered digraphs represent
a promising step in this direction, they introduce certain unreachability between vertices,

which, notably, allowed us to evaluate the importance of our proposed inequalities.
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Supplemental material

Table 6: Statistics for average results for the instances of Group 1.

-n
o

—

ttt+++t++++5H
(S

| :]l c“nll 5][ Sll EEEEE

linear relaxation cpu bb

Ineq. Mean Median Max Min Mean Median Max Min Mean Median Max Min

2767.9 2756.9 3181.8 2314.4 600.0 507.6 1719.6 9.3 29577.4 18407.5 83716.0 363.0

3098.9 3119.8 3652.8 2590.5 110.6 124.9 391.6 12.3 4308.3 4350.0 17390.0 363.0

3219.3 3200.6 3897.6 2642.9 115.1  80.4 6353 6.1 1853.6 1174.511730.0 53.0

2991.3 3019.8 3510.8 2449.6 2232 185.3 786.4 3.8 10797.7 7442.0 37225.0 130.0

2955.6 2989.0 3479.7 2444.7 295.1 271.5 887.3 5.2 12224.1 9921.5 36441.0 144.0

3106.9 3123.8 3661.8 2596.5 113.8  80.0 434.513.6 4257.9 3030.5 18477.0 306.0

(13). (14) 3098.6 3115.1 3652.7 2593.2 154.4 165.6 619.310.9 5214.5 4940.5 19951.0 268.0
J(L1) 2790.6 2795.4 3188.7 2340.0 541.9 366.0 1738.5 24.1 24581.0 14189.0 70962.0 941.0
. . 3207.6 3293.33965.2 2693.0 72.2 57.6 411.7 3.6 1641.5 1231.0 10203.0 68.0
3288.3 3286.2 3957.22686.9 458 43.0 137.5 2.7 1117.2 1067.0 2825.0 43.0
(17),(18),(19) 3297.6 3293.3 3965.2 2693.0 87.4 515 4224 29 1261.8 900.5 5329.0 45.0

Table 7: Statistics for average results for the instances of Group 2.

linear relaxation cpu bb

Ineq. Mean Median Max Min Mean Median Max Min  Mean Median Max  Min
(FFP 2038.4 2826.8 3450.0 2656.1 491.3 416.6 1614.7 126.3 18095.1 18069.5 44310.0 4469.0
+(19] 3261.2 3206.7 3802.7 2880.4 110.4 104.8 351.1 11.8 4363.6 3342.0 13303.0 660.0
+ E 3365.5 3329.1 3823.2 3011.4 182.1 97.0 580.4 19.8 2804.8 1867.5 8797.0 345.0
+(17] 3155.8 3070.6 3703.4 2765.8 200.2 195.8 462.3 26.2 7766.3 7319.0 16921.0 1611.0
+(16] 3122.0 3043.3 3664.0 2764.9 2229 206.3 559.8 17.9 8686.2 8224.0 20859.0 1043.0
+ E 3264.8 3221.5 3803.1 2880.4 114.6 110.8 318.5 11.2 4657.5 4023.0 11072.0 598.0
+ E ,,. 3255.6 3204.6 3800.1 2880.4 132.9 118.7 2835 21.0 5221.5 4197.511790.0 1351.0
+(10),(11) 2058.1 2851.8 3470.9 2663.5 432.0 342.21038.5 90.5 15902.6 14342.5 34393.0 2725.0
+(15),(17), (L8) 3440.4 34249 3934.8 30559 83.3 68.8 306.1 10.6 1698.3 1427.0 5089.0 190.0
+(17).(18).(19) 3435.6 3406.8 3934.8 3054.1 76.4 59.5 2835 13.4 1630.5 1273.0 5353.0 418.0
+(15),(17),(18),(19) 3440.4 3424.9 3934.8 3055.9 116.6 88.1 399.9 26.3 1682.6 1386.5 5295.0 371.0

Table 8: Statistics for average results for the instances of Group 3.
linear relaxation cpu bb

Ineq. Mean Median Max Min Mean Median Max Min  Mean Median Max  Min
(FFP 2988.4 3026.6 3611.3 2423.5 864.2 714.2 1800.0 191.3 42479.2 39387.0 143871.0 5414.0
+ E 3115.1 3073.3 3720.1 2485.8 413.9 235.1 1800.0 29.8 12027.2 8342.5 32957.0 1114.0
+ @ 3251.0 3167.1 3850.2 2741.3 435.4 418.6 1193.0 31.9 8430.6 6721.0 24230.0 602.0
+(17] 3023.0 3034.1 3614.0 2462.8 677.6 434.3 1800.0 130.1 30258.5 15243.5 119345.0 4888.0
+(16] 3018.8 3035.5 3611.5 2451.6 742.2 501.3 1800.0 43.0 33156.6 19594.5 101368.0 1870.0
+(15] 3057.7 3059.1 3614.0 2466.4 634.7 509.1 1800.0 25.4 28757.6 17909.5 123236.0 1118.0
+ E (13, (14) 3052.0 3058.9 3690.7 2456.3 580.2 430.1 1463.4 38.3 27917.5 15128.5 111814.0 2031.0
+ E , 3016.5 3028.5 3614.0 2430.2 732.0 394.8 1800.0 49.5 35159.2 13177.0 115724.0 2215.0
+(15),(17), (18) 3284.6 3181.53857.8 2745.7 303.7 252.6 1061.4 33.8 5088.6 3950.0 15973.0 882.0
+(17] l»lt 3286.5 3178.5 3857.8 2745.7 334.8 317.1 7745 19.8 71853 6152.0 19518.0 616.0
+(15),(17),(18),(19) 3288.8 3181.5 3857.8 2745.7 467.1 424.91800.0 27.9 5378.1 4986.0 11947.0 718.0
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